We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian process and non-Gaussian response variables. The class of models under consideration includes specifications for discrete choices, event counts and limited dependent variables (truncation, censoring, and sample selection) among others. Our algorithm relies upon a novel implementation of Efficient Importance Sampling (EIS) specifically designed to exploit typical sparsity of high-dimensional spatial precision (or covariance) matrices. It is numerically very accurate and computationally feasible even for very high-dimensional latent processes. Thus Maximum Likelihood (ML) estimation of high-dimensional non-Gaussian spatial models, hitherto considered to be computationally prohibitive, becomes feasible. We illustrate our approach with ML estimation of a spatial probit for US presidential voting decisions and spatial count data models (Poisson and Negbin) for firm location choices.
Co-authors: Jean-Francois Richard, Jan Vogler.